12,152 research outputs found

    Final neutrino oscillation results from LSND

    Get PDF

    Parity Reversing Involutions on Plane Trees and 2-Motzkin Paths

    Get PDF
    The problem of counting plane trees with nn edges and an even or an odd number of leaves was studied by Eu, Liu and Yeh, in connection with an identity on coloring nets due to Stanley. This identity was also obtained by Bonin, Shapiro and Simion in their study of Schr\"oder paths, and it was recently derived by Coker using the Lagrange inversion formula. An equivalent problem for partitions was independently studied by Klazar. We present three parity reversing involutions, one for unlabelled plane trees, the other for labelled plane trees and one for 2-Motzkin paths which are in one-to-one correspondence with Dyck paths.Comment: 8 pages, 4 figure

    Stochastic Cluster Series expansion for quantum spin systems

    Full text link
    In this paper we develop a cluster-variant of the Stochastic Series expansion method (SCSE). For certain systems with longer-range interactions the SCSE is considerably more efficient than the standard implementation of the Stochastic Series Expansion (SSE), at low temperatures. As an application of this method we calculated the T=0-conductance for a linear chain with a (diagonal) next nearest neighbor interaction.Comment: 5 pages, 7 figure

    The infrared spectra of very large, compact, highly symmetric, polycyclic aromatic hydrocarbons (PAHs)

    Full text link
    The mid-infrared spectra of large PAHs ranging from C54H18 to C130H28 are determined computationally using Density Functional Theory. Trends in the band positions and intensities as a function of PAH size, charge and geometry are discussed. Regarding the 3.3, 6.3 and 11.2 micron bands similar conclusions hold as with small PAHs. This does not hold for the other features. The larger PAH cations and anions produce bands at 7.8 micron and, as PAH sizes increases, a band near 8.5 micron becomes prominent and shifts slightly to the red. In addition, the average anion peak falls slightly to the red of the average cation peak. The similarity in behavior of the 7.8 and 8.6 micron bands with the astronomical observations suggests that they arise from large, cationic and anionic PAHs, with the specific peak position and profile reflecting the PAH cation to anion concentration ratio and relative intensities of PAH size. Hence, the broad astronomical 7.7 micron band is produced by a mixture of small and large PAH cations and anions, with small and large PAHs contributing more to the 7.6 and 7.8 micron component respectively. For the CH out-of-plane vibrations, the duo hydrogens couple with the solo vibrations and produce bands that fall at wavelengths slightly different than their counterparts in smaller PAHs. As a consequence, previously deduced PAH structures are altered in favor of more compact and symmetric forms. In addition, the overlap between the duo and trio bands may reproduce the blue-shaded 12.8 micron profile.Comment: ApJ, 36 pages, 9 fig

    Weak non-linearities and cluster states

    Full text link
    We propose a scalable approach to building cluster states of matter qubits using coherent states of light. Recent work on the subject relies on the use of single photonic qubits in the measurement process. These schemes have a low initial success probability and low detector efficiencies cause a serious blowup in resources. In contrast, our approach uses continuous variables and highly efficient measurements. We present a two-qubit scheme, with a simple homodyne measurement system yielding an entangling operation with success probability 1/2. Then we extend this to a three-qubit interaction, increasing this probability to 3/4. We discuss the important issues of the overhead cost and the time scaling, showing how these can be vastly improved with access to this new probability range.Comment: 5 pages, to appear in Phys. Rev.

    Monodisperse self-assembly in a model with protein-like interactions

    Full text link
    We study the self-assembly behaviour of patchy particles with `protein-like' interactions that can be considered as a minimal model for the assembly of viral capsids and other shell-like protein complexes. We thoroughly explore the thermodynamics and dynamics of self assembly as a function of the parameters of the model and find robust assembly of all target structures considered. Optimal assembly occurs in the region of parameter space where a free energy barrier regulates the rate of nucleation, thus preventing the premature exhaustion of the supply of monomers that can lead to the formation of incomplete shells. The interactions also need to be specific enough to prevent the assembly of malformed shells, but whilst maintaining kinetic accessibility. Free-energy landscapes computed for our model have a funnel-like topography guiding the system to form the target structure, and show that the torsional component of the interparticle interactions prevents the formation of disordered aggregates that would otherwise act as kinetic traps.Comment: 11 pages; 10 figure

    A contiuum model for low temperature relaxation of crystal steps

    Full text link
    High and low temperature relaxation of crystal steps are described in a unified picture, using a continuum model based on a modified expression of the step free energy. Results are in agreement with experiments and Monte Carlo simulations of step fluctuations and monolayer cluster diffusion and relaxation. In an extended model where mass exchange with neighboring terraces is allowed, step transparency and a low temperature regime for unstable step meandering are found.Comment: Submitted to Phys.Rev.Let
    • …
    corecore